Solved Excerxise 1.2 - Class 10 Mathematics

 Exercise 1.2 – Complex Numbers

Class 10th Mathematics | Solved Exercises

Watch the Complete video: Click Here

Introduction;

In mathematics, complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane. A complex number is in the form:

z = a + ib

Where:
- a is the real part
- b is the imaginary part
- i is the imaginary unit, with the property i² = -1

This exercise covers foundational concepts such as:
- Additive and multiplicative inverses
- Conjugates
- Modulus (absolute value)
- Graphical representation
- Separation of real and imaginary parts
- Basic algebraic operations
- Inequalities involving complex numbers

Question 1: Find the additive inverse of each complex number.

1.       (a) 4 + 5i

·         Additive inverse is the negative of the number:

·         → -4 - 5i

2.       (b) -3 - 5i

·         → 3 + 5i

3.       (c) 5 - 5i

·         → -5 + 5i

4.       (d) 4i

·         → 0 - 4i

Question 2: Show that each pair of complex numbers are additive inverses of each other.

        I.            2 + 3i and -2 - 3i

·         Sum: (2 + 3i) + (-2 - 3i) = 0

·         Hence, additive inverses.

      II.             -5 + 4i and 5 - 4i

·         Sum = 0 ⇒ additive inverses.

    III.            6 - 2i and -6 + 2i

·         Sum = 0 ⇒ additive inverses.

    IV.            4 - 3i and -4 + 3i

·         Sum = 0 ⇒ additive inverses.

Question 3: Find the multiplicative inverse of each complex number.

a)      2 + i

·         Formula: 1/(a + bi) = (a - bi)/(a² + b²)

·         → (2 - i)/(2² + 1²) = (2 - i)/5

b)     1 + i

·         → (1 - i)/(1² + 1²) = (1 - i)/2

c)      10 - 3i

·         → (10 + 3i)/(10² + 3²) = (10 + 3i)/109

Question 4: Find the product of each complex number and its conjugate.

1)     2 + 3i

·         → (2 + 3i)(2 - 3i) = 4 + 9 = 13

2)     1 - 2i

·         → (1 - 2i)(1 + 2i) = 1 + 4 = 5

3)     -4 + i

·         → (-4 + i)(-4 - i) = 16 + 1 = 17

Question 5: If z₁ = 1 - 2i and z₂ = 2 + i, show that z₁/z₂ = (1 - 5i)/5

Solution:

·         z₁ / z₂ = (1 - 2i)/(2 + i)

·         Multiply numerator and denominator by conjugate of denominator:

·         → (1 - 2i)(2 - i)/(2 + i)(2 - i)

·         = (2 - i - 4i + 2i²)/(4 + 1) = (2 - 5i - 2)/5 = -5i/5 = -i

Question 6: Let z = a + ib, then show |z| = √(a² + b²), and |z₁ – z₂| = |z₂ – z₁|

Solution:

·         Let z₁ = 1 + i, z₂ = 2 - i

·         z₁ - z₂ = (1 + i) - (2 - i) = -1 + 2i

·         |z₁ - z₂| = √((-1)² + 2²) = √5

·         z₂ - z₁ = (2 - i) - (1 + i) = 1 - 2i

·         |z₂ - z₁| = √((1)² + (-2)²) = √5

·         Hence, |z₁ - z₂| = |z₂ - z₁|

Question 7: Find |z|, |-z|, |z₁ – z₂|, and |z₁| – |z₂|

         i.            z = -1 - i

·         |z| = √((-1)² + (-1)²) = √2

·         |-z| = |1 + i| = √2

       ii.            z = 1 - 2i

·         |z| = √(1² + (-2)²) = √5

·         |-z| = |-1 + 2i| = √5

     iii.            z₁ = 2 - i, z₂ = -3 + 2i

·         z₁ - z₂ = (2 - i) - (-3 + 2i) = 5 - 3i

·         |z₁ - z₂| = √(5² + (-3)²) = √34

·         |z₁| = √(2² + (-1)²) = √5

·         |z₂| = √((-3)² + 2²) = √13

·         |z₁| - |z₂| = √5 - √13

Question 8: Represent the numbers in the complex plane

(a)

·         3 - i → point (3, -1)

(b)

·         2 + 3i → point (2, 3)

(c)

·         -2 - 3i → point (-2, -3)

(d)

·         4 - 2i → point (4, -2)

Question 9: Separate real and imaginary parts of each complex number

1.       -5/(1 + 5i)

·         Multiply numerator and denominator by conjugate:

·         → (-5)(1 - 5i)/(1² + 25) = (-5 + 25i)/26

·         Real part = -5/26, Imaginary part = 25/26

2.       (1 + 2i)/(1 + i)

·         → (1 + 2i)(1 - i)/(1 + i)(1 - i) = (3 + i)/2

·         Real = 3/2, Imaginary = 1/2

3.       (2 + 3i)/(1 - i)

·         → (2 + 3i)(1 + i)/(1 + 1) = (-1 + 5i)/2

·         Real = -1/2, Imaginary = 5/2

4.       (4 + 3i)/(1 + i)

·         → (4 + 3i)(1 - i)/2 = (7 - i)/2

·         Real = 7/2, Imaginary = -1/2

5.       (2 - 5i)/(2 + 3i)

·         → (2 - 5i)(2 - 3i)/(13) = (-11 - 16i)/13

·         Real = -11/13, Imaginary = -16/13

6.       (1 - 2i)/(2 + i)

·         → (1 - 2i)(2 - i)/5 = -i

·         Real = 0, Imaginary = -1

7.       (2 + 3i)/(3 - 4i)

·         → (2 + 3i)(3 + 4i)/25 = (-6 + 17i)/25

·         Real = -6/25, Imaginary = 17/25

Question 10: Show properties using z and its conjugate

Ø  Part (i)

·         z + z̄ = 2a → real number

Ø  Part (ii)

·         z - z̄ = 2ib → imaginary number

Ø  Part (iii)

·         z * z̄ = a² + b² → real number

Ø  Part (iv)

·         z / z̄ = (a + ib)/(a - ib) → generally not real or imaginary

Ø  Part (v)

·         Conjugate of conjugate: z̄̄ = z

Question 11: Represent the sum and difference of complex numbers graphically

v  z₁ = 3 + 2i, z₂ = 2 + 3i

·         z₁ + z₂ = 5 + 5i

·         z₁ - z₂ = 1 - i

v  z₁ = 2 - i, z₂ = -3 + i

·         z₁ + z₂ = -1

·         z₁ - z₂ = 5 - 2i

Question 12: Represent z₁ + z₂ and show |z₁ + z₂|² ≤ (|z₁| + |z₂|)²

Solution:

Example:-  z₁ = 1 + 2i, z₂ = 2 + 3i

·         z₁ + z₂ = 3 + 5i → |z₁ + z₂|² = 9 + 25 = 34

·         |z₁| = √5 ≈ 2.24, |z₂| = √13 ≈ 3.61

·         (|z₁| + |z₂|)² ≈ (5.85)² = 34.22

·         Hence, 34 ≤ 34.22 ⇒ verified

Post a Comment

0 Comments