Chapter 1: Complex Numbers
Complete Notes & Exercise 1.1 Solutions
To watch detailed video: Click Here
Introduction to Complex Numbers
In real numbers, the square root of a negative number is
undefined. To handle such situations, imaginary numbers and complex numbers
were introduced.
Imaginary Number
i = √−1
Powers of i:
i¹ = i
i² = -1
i³ = -i
i⁴ = 1 (repeats every 4 powers)
Complex Number
A complex number is a number in the form a + bi, where a and
b are real numbers, and i = √−1.
Pure Imaginary Number
A complex number of the form 0 + bi, such as 2i or -5i.
Conjugate of Complex Number
The conjugate of a + bi is a - bi. It is used in division of
complex numbers.
Operations on Complex Numbers
Addition/Subtraction: (3 + 2i) + (1 - 4i) = 4 - 2i
Multiplication: (2 + 3i)(1 - i) = 5 + i
Division: (1 + i)/(1 - i) = i
Exercise 1.1 – Solutions
Question 1: Simplify and express in terms of i
i. √−3
= √3 × √−1
= √3i Answer
ii. 6√−4
= 6 × √4 × √−1
= 6 × 2i
= 12i
iii. √(−4/9)
= √−4 / √9
= 2i / 3
iv. −√−20
= −√(4×5) × √−1
= −2√5i
v. 4 − √−60
= 4 − √(4×15) × √−1
= 4 − 2√15i
vi. √−8 × √−2
= √8i × √2i
= √16 × i²
= 4 × (−1)
= −4
Question 2: Simplify
i. (4 − i) + (5 + 5i)
= (4+5) + (-1+5)i
= 9 + 4i
ii. (7 − 6i) − (5 − 6i)
= (7-5) + (-6+6)i
= 2
iii. (−2 + 8i) − (7 + 3i)
= (-2-7) + (8-3)i
= −9 + 5i
iv. (4 − 2i) − (5 − 2i)
= (4-5) + (-2+2)i
= −1
v. (2 + 4i)(1 + 2i)
= 2*1 + 2*2i + 4i*1 + 4i*2i
= 2 + 4i + 4i + 8i2
= 2 + 8i + 8(-1)
= −6 + 8i
vi. (1 − 4i)(2 − 3i)
= 1×2 + 1×(−3i) + (−4i)×2 +
(−4i)×(−3i)
= 2 − 3i − 8i + 12i²
= 2 − 11i + 12(−1)
= 2 − 11i − 12
= −10 − 11i
vii. −8i(2 − 2i)
= (−8i)×2 + (−8i)×(−2i)
= −16i + 16i²
= −16i + 16(−1)
= −16i − 16
= −16 − 16i
viii. (3 + 2i)²
= (3 + 2i)(3 + 2i)
= 3×3 + 3×2i + 2i×3 + 2i×2i
= 9 + 6i + 6i + 4i²
= 9 + 12i + 4(−1)
= 9 + 12i − 4
= 5 + 12i
ix. (3 − 6i)(3 + 6i)
= a² − b² where a = 3, b = 6i
= 3² − (6i)²
= 9 − (36)(−1)
= 9 + 36
= 45
x. (−5 − 3i)²
= (−5)² + 2(−5)(−3i) + (−3i)²
= 25 + 30i + 9(−1)
= 25 + 30i − 9
= 16 + 30i
xi. (1 + √2i)(1 − √3i)
= 1×1 + 1×(−√3i) + √2i×1 +
√2i×(−√3i)
= 1 − √3i + √2i − √6(i²)
= 1 − √3i + √2i + √6
= (1 + √6) + (√2 − √3)i
xii. (√2 + i)(√2 − i)
= a² − b² where a = √2, b = i
= (√2)² − (i)²
= 2 − (−1)
= 2 + 1
= 3
Question 3: Simplify
i. i⁰ = 1
·
Any number raised to the
power 0 is 1.
·
So, i⁰ = 1
ii. i¹¹ = i³ = −i
·
The powers of i repeat
every 4 terms:
·
i¹ = i, i² = −1, i³ = −i,
i⁴ = 1, ...
·
11 mod 4 = 3 → i¹¹ = i³ =
−i
iii. i²⁸ = i⁰ = 1
·
28 mod 4 = 0, so i²⁸ = i⁰ =
1
iv. (−i)²¹ = −i
·
(−i)²¹ = (−1)²¹ × i²¹ =
(−1) × i¹
·
= −i
v. (3i)³ = −27i
·
(3i)³ = 3³ × i³ = 27 × (−i)
= −27i
vi. (−2i)⁴ = 16
·
(−2i)⁴ = (−2)⁴ × i⁴ = 16 ×
1 = 16
Question 4: Simplify in the form a + bi
i. 9 + i⁶
Step 1: Recall that powers of i
repeat every 4 steps:
i¹ = i, i² = -1, i³ = -i, i⁴ = 1, then repeats...
i⁶ = i² = -1
Step 2: Substitute in the expression:
9 + i⁶ = 9 + (-1)
= 8
ii. −17 + i⁸ = −16
Step 1: i⁸ = (i⁴)² = 1² = 1
Step 2: −17 + i⁸ = −17 + 1
= −16
iii. i⁴ − 13i = 1 − 13i
Step 1: i⁴ = 1
Step 2: i⁴ − 13i
= 1 − 13i
iv. i³ + 2i = i
Step 1: i³ = -i
Step 2: -i + 2i
= i
v. i⁵ + i⁷ = 0
Step 1: i⁵ = i (since i⁴ = 1, i⁵ =
i⁴·i = 1·i = i)
Step 2: i⁷ = i³ = -i
Step 3: i⁵ + i⁷ = i + (-i)
= 0
vi. i⁷⁰ − i¹⁰⁰ = 0
Step 1: Find i⁷⁰ and i¹⁰⁰
→ i⁷⁰ = i² = -1
→ i¹⁰⁰ = i⁰ = 1
Step 2: i⁷⁰ − i¹⁰⁰ = -1 − 1
= -2
Question 5: Divide and simplify in the form a + bi
i. (3 / (4 − i)) × (4 + i)/(4 + i)
·
= (3 × (4 + i)) / ((4 −
i)(4 + i))
·
= (12 + 3i) / (4² + 1²)
·
= (12 + 3i) / 17
ii. (3i / (6 + 5i)) × (6 − 5i)/(6 − 5i)
·
= (3i × (6 − 5i)) / ((6 +
5i)(6 − 5i))
·
= (18i − 15i²) / (36 + 25)
·
= (18i + 15) / 61
·
= (15 + 18i) / 61
iii. (3 − i√5)/(3 + i√5)
·
= [(3 − i√5)(3 − i√5)] /
[(3 + i√5)(3 − i√5)]
·
= (9 − 6i√5 + (i√5)²) / (9
+ 5)
·
= (9 − 6i√5 − 5) / 14
·
= (4 − 6i√5) / 14
·
= (2/7) − (3/7)i√5
iv. (2 + 7i)/5i
·
= [(2 + 7i) × i] / (5i × i)
·
= (2i + 7i²) / (5i²)
·
= (2i − 7) / (−5)
·
= (−7/−5) + (2i/−5)
·
= 7/5 − 2/5i
v. (4 + 5i)/(4 − 5i)
·
= [(4 + 5i)(4 + 5i)] / [(4
− 5i)(4 + 5i)]
·
= (16 + 40i + 25i²) / (16 +
25)
·
= (16 + 40i − 25) / 41
·
= (−9 + 40i) / 41
·
= −9/41 + 40/41i
vi. (3 + 2i)/(2 + i)
·
= [(3 + 2i)(2 − i)] / [(2 +
i)(2 − i)]
·
= (6 − 3i + 4i − 2i²) / (4
+ 1)
·
= (6 + i + 2) / 5
·
= (8 + i) / 5
·
= 8/5 + 1/5i
vii. (5 + i)/(1 + 2i)
·
= [(5 + i)(1 − 2i)] / [(1 +
2i)(1 − 2i)]
·
= (5 − 10i + 1i − 2i²) / (1
+ 4)
·
= (5 − 9i + 2) / 5
·
= (7 − 9i) / 5
·
= 7/5 − 9/5i
viii. (a + ib)/(a − ib)
·
= [(a + ib)(a + ib)] / [(a
− ib)(a + ib)]
·
= (a + ib)² / (a² + b²)
ix. (1 + i)/(1 − i)²
·
(1 − i)² = 1 − 2i + i² = 1
− 2i − 1 = −2i
·
Then (1 + i)/(−2i) = [(1 +
i) × i] / (−2i × i)
·
= (i + i²) / (−2 × −1) = (i
− 1)/2
·
= −0.5 + 0.5i
x. ((2 + 2i)²)/((1 + i)²)
·
Numerator: (2 + 2i)² = 4 +
8i + 4i² = 4 + 8i − 4 = 8i
·
Denominator: (1 + i)² = 1 +
2i + i² = 1 + 2i − 1 = 2i
·
Then (8i)/(2i) = 4
Developing Skilled Knowledge – Conceptual Answers
1. An imaginary number is a number of the form bi, where b
is a real number and i = √−1.
2. Imaginary numbers are not real numbers because they
include √−1.
3. Examples of pure imaginary numbers: 2i, −5i, (1/3)i.
4. Powers of i form a repeating cycle: i, −1, −i, 1.
5. Product of (2 − 3i)(2 − 3i) = −5 − 12i (not purely
imaginary).
6. Yes, zz̅ = (a + bi)(a − bi) = a² + b² ∈ ℝ (real number).
0 Comments