12th Physics Numericals
PHYSICS 12th Federal Board
(20 NUMERICALS)
To watch Details Explanation of each topic: Click Here
1. A 280 J of work is done in carrying a charge of 2 C from a place where the potential is -12 V to another place where the potential is V. Calculate the value of V?
Step 1: Use the relation W = q(V - Vi)
Step 2: Rearranging gives V = W/q + Vi
Step 3: Substitute values: V = 280 / 2 + (-12) = 140 - 12
Final Answer: V = 128 V
2. Two-point charges of 8 μC and -4 μC are separated by 10 m. At what point on the line joining them is the electric potential zero?
Step 1: Let distance from +8μC charge to point be x.
Step 2: Set potentials equal: 8/x = 4/(10 - x)
Step 3: Solve: 8(10 - x) = 4x => 80 - 8x = 4x => 12x = 80 => x = 6.67 m
Final Answer: 6.67 m from +8 μC charge
3. A 6 μF capacitor is charged to 120 V and connected to an uncharged 4 μF capacitor. Calculate the new P.D.
Step 1: Find total charge: Q = C × V = 6μF × 120V = 720 μC
Step 2: Total capacitance = 6 + 4 = 10 μF
Step 3: V = Q / C = 720 / 10 = 72 V
Final Answer: 72 V
4. A carbon electrode has resistance 0.125 Ω at 20°C. α = -0.0005/°C. Find resistance at 85°C.
Step 1: ΔT = 85 - 20 = 65°C
Step 2: R = R0(1 + αΔT) = 0.125(1 - 0.0005 × 65)
Step 3: R = 0.125(0.9675) = 0.1209 Ω
Final Answer: 0.1209 Ω
5. A 10 W resistor has resistance 120 Ω. Find the current.
Step 1: Use P = I²R ⇒ I = √(P/R)
Step 2: I = √(10 / 120) = √0.0833 = 0.289 A
Final Answer: 0.289 A
6. A 50 Ω resistor has 100 V across it for 1 hour. Calculate (a) Power (b) Energy.
Step 1: P = V² / R = 100² / 50 = 200 W
Step 2: E = P × t = 200 × 3600 = 720,000 J
Final Answer: (a) 200 W, (b) 720,000 J
7. Find distance from wire with 10 A current where B = 5×10⁻⁴ T.
Step 1: B = μ₀I / (2πr) ⇒ r = μ₀I / (2πB)
Step 2: r = (4π×10⁻⁷×10) / (2π×5×10⁻⁴) = 4×10⁻³ m
Final Answer: 4 mm
8. An 8 MeV proton enters 2.5 T field perpendicularly. Find force and radius.
Step 1: Convert E to joules: 8 MeV = 1.28×10⁻¹² J
Step 2: v = √(2E/m) = √(2×1.28×10⁻¹² / 1.67×10⁻²⁷)
Step 3: F = evB = 1.6×10⁻¹⁹ × v × 2.5 = 1.57×10⁻¹¹ N
Step 4: r = mv / (eB) = 0.163 m
Final Answer: (a) 1.57×10⁻¹¹ N, (b) 0.163 m
9. Coil with 250 turns, 6 cm × 4 cm, max torque 0.20 Nm in 0.25 T. Find current.
Step 1: A = 0.06 × 0.04 = 0.0024 m²
Step 2: τ = NIBA ⇒ I = τ / (NBA) = 0.20 / (250 × 0.25 × 0.0024)
Final Answer: 1.33 A
10. Two wires 10 cm apart carry 8 A opposite directions. Find B halfway.
Step 1: B = μ₀I / (2πr), r = 0.05 m (halfway)
Step 2: B_total = 2 × (μ₀I / 2πr) = μ₀I / πr = 6.4×10⁻⁵ T
Final Answer: 6.4×10⁻⁵ T
11. EMF = 200 V, ΔI = 5 A, Δt = 0.1 s. Find L.
Step 1: EMF = L × (ΔI / Δt)
Step 2: L = 200 × 0.1 / 5 = 4 H
Final Answer: 4 H
12. Mutual inductance 1.5 H, ΔI = 20 A in 0.5 s. Find flux linkage.
Step 1: ΔΦ = M × (ΔI / Δt) = 1.5 × (20 / 0.5) = 60 Wb
Final Answer: 60 Wb
13. Voltage: V = 240 sin(1.25×10⁴ t – 30°), C = 0.01 μF. Find current.
Step 1: I = C × dV/dt = ωCV₀ = 1.25×10⁴ × 0.01×10⁻⁶ × 240
Step 2: I = 0.03 A = 30 mA (peak)
Final Answer: 30 mA
14. L = 100 μH, I = 10 mA, V = 6.3 V. Find frequency.
Step 1: V = 2πfLI ⇒ f = V / (2πLI)
Step 2: f = 6.3 / (2π × 100×10⁻⁶ × 0.01) = 1.0027 MHz
Final Answer: 1.0027 MHz
15. IB = 100 μA, β = 100. Find IC, IE, IC/IE.
Step 1: IC = β × IB = 0.01 A
Step 2: IE = IC + IB = 0.0101 A
Step 3: IC/IE = 0.01 / 0.0101 = 0.9901
Final Answer: IC = 0.01 A, IE = 0.0101 A, IC/IE = 0.9901
16. Length appears 1/3rd. Find speed.
Step 1: L = L₀√(1 - v²/c²) ⇒ 1/3 = √(1 - v²/c²)
Step 2: Square both sides: 1/9 = 1 - v²/c² ⇒ v²/c² = 8/9 ⇒ v = c√(8/9)
Step 3: v = 3×10⁸ × √(8/9) = 2.83×10⁸ m/s
Final Answer: 2.83×10⁸ m/s
17. 50 keV X-ray scattered 90°. Find energy after scattering.
Step 1: Δλ = h/(mec)(1 - cosθ) = 0.00243 nm
Step 2: E' = hc / (λ + Δλ) ⇒ E' ≈ 45.56 keV
Final Answer: 45.56 keV
18. Mass of 14N = 13.999234 u. Find binding energy.
Step 1: Mass of parts = 7p + 7n = 7(1.007276) + 7(1.008665) = 14.1115 u
Step 2: Mass defect = 14.1115 - 13.999234 = 0.1123 u
Step 3: BE = Δm × 931.5 = 104.66 MeV
Final Answer: 104.66 MeV
19. Half-life of Ra = 1.6×10³ years. Find decay constant.
Step 1: λ = ln(2)/T₁/₂ = 0.693 / (1.6×10³ × 365 × 24 × 3600)
Step 2: λ = 1.37×10⁻¹¹ s⁻¹
Final Answer: 1.37×10⁻¹¹ s⁻¹
20. Th → Pa β-decay. Mass Th = 234.0436 u, Pa = 234.0428 u. Find energy released.
Step 1: Δm = 234.0436 - 234.0428 = 0.0008 u
Step 2: E = Δm × 931.5 = 0.0008 × 931.5 = 0.745 MeV
Final Answer: 0.745 MeV
0 Comments